Conformational Changes of Elongation Factor G on the Ribosome during tRNA Translocation

نویسندگان

  • Jinzhong Lin
  • Matthieu G. Gagnon
  • David Bulkley
  • Thomas A. Steitz
چکیده

The universally conserved GTPase elongation factor G (EF-G) catalyzes the translocation of tRNA and mRNA on the ribosome after peptide bond formation. Despite numerous studies suggesting that EF-G undergoes extensive conformational rearrangements during translocation, high-resolution structures exist for essentially only one conformation of EF-G in complex with the ribosome. Here, we report four atomic-resolution crystal structures of EF-G bound to the ribosome programmed in the pre- and posttranslocational states and to the ribosome trapped by the antibiotic dityromycin. We observe a previously unseen conformation of EF-G in the pretranslocation complex, which is independently captured by dityromycin on the ribosome. Our structures provide insights into the conformational space that EF-G samples on the ribosome and reveal that tRNA translocation on the ribosome is facilitated by a structural transition of EF-G from a compact to an elongated conformation, which can be prevented by the antibiotic dityromycin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation.

Translocation, a coordinated movement of two tRNAs together with mRNA on the ribosome, is catalyzed by elongation factor G (EF-G). The reaction is accompanied by conformational rearrangements of the ribosome that are, as yet, not well characterized. Here, we analyze those rearrangements by restricting the conformational flexibility of the ribosome by antibiotics binding to specific sites of the...

متن کامل

An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation.

The elongation cycle of protein synthesis is completed by translocation, a rearrangement during which two tRNAs bound to the mRNA move on the ribosome. The reaction is promoted by elongation factor G (EF-G) and accelerated by GTP hydrolysis. Here we report a pre-steady-state kinetic analysis of translocation. The kinetic model suggests that GTP hydrolysis drives a conformational rearrangement o...

متن کامل

Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation.

During protein synthesis, elongation factor G (EF-G) binds to the ribosome and promotes the step of translocation, a process in which tRNA moves from the A to the P site of the ribosome and the mRNA is advanced by one codon. By using three-dimensional cryo-electron microscopy, we have visualized EF-G in a ribosome-EF-G-GDP-fusidic acid complex. Fitting the crystal structure of EF-G-GDP into the...

متن کامل

Large-Scale Movement of Elongation Factor G and Extensive Conformational Change of the Ribosome during Translocation

Elongation factor (EF) G promotes tRNA translocation on the ribosome. We present three-dimensional reconstructions, obtained by cryo-electron microscopy, of EF-G-ribosome complexes before and after translocation. In the pretranslocation state, domain 1 of EF-G interacts with the L7/12 stalk on the 50S subunit, while domain 4 contacts the shoulder of the 30S subunit in the region where protein S...

متن کامل

Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation.

On the basis of kinetic data on ribosome protein synthesis, the mechanical energy for translocation of the mRNA-tRNA complex is thought to be provided by GTP hydrolysis of an elongation factor (eEF2 in eukaryotes, EF-G in bacteria). We have obtained cryo-EM reconstructions of eukaryotic ribosomes complexed with ADP-ribosylated eEF2 (ADPR-eEF2), before and after GTP hydrolysis, providing a struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 160  شماره 

صفحات  -

تاریخ انتشار 2015